Facile synthesis of nano-sized ZnO by direct precipitation method

نویسندگان

  • Samira Bagheri
  • Sharifah Bee Abd Hamid
چکیده

In this contribution we are presenting a simple precipitation method to synthesize zinc oxide (ZnO) nanoparticles using zinc nitrate and urea in aqueous solution. The obtained precipitated compound was calcined and structurally characterized by Powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectroscopic techniques. The powder X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The thermal behavior of as-prepared compound was examined and it indicates that there is no further mass loss above 450 °C. Scanning electron micrographs show uniform spherical like morphology of ZnO. The TEM results reveal that the particle sizes were in the order of 30–50 nm and the average particle size is around 35 nm. The FT-IR result shows the existence of OH, NO2 , CO, CO2 groups in uncalcined sample. The band gap was higher for synthesized ZnO particles than their bulk counterparts. The results indicate that urea is an attractive material that can be used as precipitation agent for preparing ZnO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nano-Sized Hexagonal and Spherical Nanoparticles of Zinc Oxide

ZnO plays an important role in many semiconductors technological aspects.  Here,  direct  precipitation  method  was  employed  for  the synthesis of nano-sized hexagonal ZnO particles, which is based on chemical  reactions between  raw materials used  in  the  experiment. ZnO  nanoparticles  were  synthesized  by  calcinations  of  the  ZnO precursor precipitates  at 250  ˚C  for 3hours. ...

متن کامل

Synthesis and Characterization of SnO2 Nanostructures Prepared by a Facile Precipitation Method

In this paper, tin dioxide nanoparticles were synthesized by a fast and simple co-precipitation method. For SnO2 preparation, we used ammonia as precipitation agent and bis (acetylacetone) ethylene diamineas as capping agent. By changing in SnCl4, acacen mole-ratio different morphologies were obtained. This semiconductor nanostructure has photo-catalyst activities and can ...

متن کامل

Diethylene Glycol-Mediated Synthesis of Nano-Sized Ceria (CeO2 )Catalyst

Nano-crystalline particles of CeO2 have been synthesized by a low temperature chemical precipitation method. The precursor materials used in this research were Ce(NO3)3.6H2O, NaOH and diethylene glycol as surfactant. X-ray powder diffraction results showed that face centered cubic CeO2 nanoparticles with crystalline size in nanometer scale were formed. Scanning electron microscopy measurement s...

متن کامل

Co-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor

Nanostructured zinc oxide (ZnO) materials have received considerable interest from scientists due to their remarkable performance in electronics, optics and photonics. ZnO nanoparticles were synthesized by co-precipitation method. ZnO nanoparticles were synthesized using Zn(NO3)3 and K2CO3 precursors. The structure of the obtained product was confirmed by the powder X-ray diffraction (XRD) anal...

متن کامل

Co-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor

Nanostructured zinc oxide (ZnO) materials have received considerable interest from scientists due to their remarkable performance in electronics, optics and photonics. ZnO nanoparticles were synthesized by co-precipitation method. ZnO nanoparticles were synthesized using Zn(NO3)3 and K2CO3 precursors. The structure of the obtained product was confirmed by the powder X-ray diffraction (XRD) anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013